A New Direction for Biomining: Extraction of Metals by Reductive Dissolution of Oxidized Ores
نویسندگان
چکیده
Biomining, the biotechnology that uses microorganisms to extract metals from ores and concentrates, is currently used exclusively for processing reduced ores and mine wastes. Metals of economic value also occur extensively in oxidized ores, such as nickel laterites. While these are not amenable to oxidative dissolution, the ferric iron minerals they contain can, in theory, be disrupted by iron reduction, causing associated metals to be released. We have harnessed the ability of the facultatively anaerobic, acidophilic bacterium Acidithiobacillus ferroooxidans to couple the oxidation of elemental sulphur to the reduction of ferric iron in the goethite fraction of a limonitic nickel ore at 30 °C. Nickel and other metals (Co, Cr and Mn) were effectively solubilised and maintained in solution due to the low pH (1.8) of the leach liquor. The results highlight the potential for the bioprocessing of oxidized, iron-rich ores using an approach that is energy-saving and environmentally-benign compared with metallurgical processes currently applied to the extraction of Ni from lateritic ores.
منابع مشابه
Biomining - A Useful Approach Toward Metal Extraction
Biomining is the extraction of specific metals from their ores through biological means usually bacteria. Although it is a new technique used by the mining industry to extract minerals such as copper, uranium and gold from their ores but nowadays biomining occupies an increasingly important place among the available mining technologies. Today biomining is no longer a promising technology but an...
متن کاملIn a Quest for Engineering Acidophiles for Biomining Applications: Challenges and Opportunities
Biomining with acidophilic microorganisms has been used at commercial scale for the extraction of metals from various sulfide ores. With metal demand and energy prices on the rise and the concurrent decline in quality and availability of mineral resources, there is an increasing interest in applying biomining technology, in particular for leaching metals from low grade minerals and wastes. Howe...
متن کاملRedox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects
Many different species of acidophilic prokaryotes, widely distributed within the domains Bacteria and Archaea, can catalyze the dissimilatory oxidation of ferrous iron or reduction of ferric iron, or can do both. Microbially mediated cycling of iron in extremely acidic environments (pH < 3) is strongly influenced by the enhanced chemical stability of ferrous iron and far greater solubility of f...
متن کاملCharacteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates
Microorganisms are used in large-scale heap or tank aeration processes for the commercial extraction of a variety of metals from their ores or concentrates. These include copper, cobalt, gold and, in the past, uranium. The metal solubilization processes are considered to be largely chemical with the microorganisms providing the chemicals and the space (exopolysaccharide layer) where the mineral...
متن کاملBiomineralization of metal-containing ores and concentrates.
Biomining is the use of microorganisms to extract metals from sulfide and/or iron-containing ores and mineral concentrates. The iron and sulfide is microbially oxidized to produce ferric iron and sulfuric acid, and these chemicals convert the insoluble sulfides of metals such as copper, nickel and zinc to soluble metal sulfates that can be readily recovered from solution. Although gold is inert...
متن کامل